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0 What can be estimated ?

» Punctual estimation
» Block average estimation

Estimate the value Z,
at the nodes of

a regular grid
Samples

Estimate the average
of the variable Z
over the block
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O Linear estimation techniques

» Linear estimator:
e Each estimation is obtained as a linear combination of the values measured at
sample points
» Several linear interpolation techniques:
* Moving average
* |nverse distance (closest point)
* Inverse distance
» Properties of the estimation:
* Smoothness
* Unbiasedness
e Exact interpolation
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O lllustration

» Exhaustive data set (reality)
» lrregular sampling used as data
» For each method, represent the estimation as a map and along a section
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O Moving average
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0 Influence polygon — Nearest neighbor
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O Inverse distance
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0 What do we want to achieve ?

» Produce an estimation of the variable z at the target location, as a linear
combination of the sample values:

*

Z,

> If the real unknown value is denoted:

Z,

> We want the estimation error:
£=2-7

* To be zero on average
e To be as small as possible (quadratic)
* To take into account:

[ Distances (between samples and target, and among samples)
[ Spatial characteristics: continuity, smoothness, ...



N\

~
ARMINES

Formalism

MINES
Tech

0 Formalism — Random framework

>
>

V VY

Reality is unknown, unique and complex

It would be impossible to reproduce all the processes involved which have
produced the sample values

Hence the choice of probabilistic framework

The regionalized variable is considered as a realization (outcome) of a
random function:

2(X) = Z (%, w) = Z(X)
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0 Random Functions

» Stationary (or order 2):
* Mean:

E(Z)=m
e Covariance:

COMZ(X), Z(x+h)] = E[Z(x) - m][Z(x+h) —m] = C(h)
 Variance: Var[Z(X)] =C(0)

DT OO W

Example of a stationary Random Function (in 1-D)
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0 Random Functions

» Intrinsic (or order 0): increments are stationary
* Mean:

E[Z(x+h)-Z(x)]=0

* \Variance - Variogram
y(h) :%Var [Z(x+h)-Z(x)] :%E[Z(x+ h)-z(x)]’

e Stationary — Intrinsic

MM%M

Example of an Intrinsic Random Function (in 1-D)
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O Kriging

» Estimation of the variable Z at the target location:

Zy =242 (%)

> The estimation error:

e Must have a zero expectation

e  And minimum variance:
Var (&) minimum

» This method is named Kriging
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0 Need for a Model

» Last constraint requires the calculation of the variance of a linear
combination which must remain positive.

» This calls for the use of a valid model (positive definite property)
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O General characteristics

» Fitting the model on the experimental variograms (or covariances)
calculated experimentally from the data
¢ (h) 4

Variogramme
expérimental

Palier

Effet de
pépite {

L2

Portée
(zone d'influence)
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» Behavior at the origin describes
the regularity of the variable

v(h)

e

- Differentiable

y(h)=h?
|h|—>0

- Continuous

- Discontinuous

I Nugget effect

Geostatistics & RGeostats
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0 General characteristics
» Behavior at large distances - y(h)
.
- Bounded ] - Unbounded .
. sill i i il
| range | I Rate < h2 |
Geostatistics & RGeostats 16




AN

Model ZF

ARMINES
MINES
ParisTech
0 Different structures
Spherical Exponential
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0 Different structures
Nugget Effect Linear
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Geometrical
2
14

Zonal

y(h,.h)+y(h)

N6O

N105

N150
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O Nesting structures

AW | y(h) | y(h) =p(h)+y,(h)

/

Example: Nested model:
* short range cubic
* spherical long range
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O Link between covariance and variogram

» A covariance is a (bounded) variogram
» An (unbounded) variogram cannot be a covariance

» When a covariance exists, the link between covariance and variogram is:

y(h) =C(0) -C(h)
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0 Reminders

» Estimation of the variable Z at the target location:

Zy =242 (%)

> The estimation error:

e Must have a zero expectation

e  And minimum variance:
Var (&) minimum

» This method is named Kriging
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O Principle

» Zis a stationary Random Variable with a constant known mean:
m=E[Z]

> The estimation is obtained as a linear combination of data :
Zy =Y AZ, + m(l_z/]”j
a a

» where the Kriging weights are obtained as solution of the Kriging system:

;A 5Cus =Cro

> We also obtain the variance of the estimation error:

Var[e] =Cyp = > 1,C,0
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O In matrix notation
» Kriging system (regular if no duplicate):
| Cap ][] =[Coo]

> Estimation:

2 =[] <[] +m><(1—2/1aj

a

> Variance of the estimation error:

Var (5) =Cuw _[/]cr]t X[Cao]
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O Properties

» Kriging is a smoothed estimation

Var (Zo) <Var (Z,)

» Kriging is an exact interpolation: at data location, kriging estimate matches
data value and estimation error is zero:

Z'(x,)=2, and Var(g,)=0

A\

Kriging weights do not depend on data values

A\

The estimation does not depend on the covariance sill

A\

The variance of estimation error is directly proportional to the covariance
sill
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O Exercise

Simple Kriging in the following setup:
» 3 Data and Target on a square pattern (mesh = 1m)

» Spherical covariance with range 1.25m and sill 2
» Known mean =2

Z,=4 Target
® S
® ®

Z]:3 23:1

» Establish and solve the simple kriging system

» Derive the estimated value and the corresponding estimation variance
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» Simple Kriging system:

_Cll C12 C13_ _/]1_ _Clo ] C(O) =2
C21 C22 C23 X /]2 — C20 C(l) =0.112
Ca Cp Gyl [A] |Gy C(\/E) =0
» Kriging weights: /]1 = 0,006
A, =], =0.056
> A =0.106
> Results: * — 5 050
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O Principle

» Zis a stationary Random Variable with a constant unknown mean:
» The estimation is obtained as a linear combination of data :

Z0 = Z/]aza
a

» where the Kriging weights are obtained as solution of the Kriging system:
2.45Cas *H =Cpq

B

2 A =1
L B
» We also obtain the variance of the estimation error:

Var (&) =Cy = > A,Cho— U
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O In matrix notation

» Kriging system (regular if no duplicate):

> Estimation: * {Za}t —Aa}
/ = X

> Variance of the estimation error:

wtame ] 5

> Can also be written replacing  C(h) by -y(h)
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O Exercise

Ordinary Kriging in the following setup:
» 3 Data and Target on a square pattern (mesh = 1m)
» Spherical covariance with range 1.25m and sill 2

Z,=4 Target
® S
® ®

Z=3 Z5=1

» Establish and solve the ordinary kriging system
» Derive the estimated value and the corresponding estimation variance
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O Exercise

» Ordinary Kriging system:

_C11 C12 C13 1 /]1 ClO C(()) =2
Ca Cp Gy 1| [A|_|Cy C(1) =0.112
C31 C32 Cs 1 /]3 Cso C ( \/E) -0
1 1 1 O |u] [ 1]
> Kriging weights: /]1 =(0.280
A, =2, =0.360
L =-0.600
» Results: Z* = 2.640
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0 Simple Kriging

2 2
Nugget 0% o =1 Sphe(2L)  31.25% o =080
0% 0% 0% 0%
] <l ] <l
0% 31.25%
o’ =057

Gaus*(2L) 44.91%

2.88% 2.88%

L

<+—>

44.91%

mean=0
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O Ordinary Kriging

2 2 _
Nugget ~ pggp 7 T sphe2) 40.6% ¢ ~O%
25% 25% 9.4% 9.4%
| ol | b,
25% 40.6%
o® =0.57

Gaus*(2L) 45.99%

4.01% 4.01%

L

+“—>

45.99%
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O Relay in Simple Kriging

Sphe(1.5L)

-2.24% 15.15% 15.15% -2.24%

[ | 1 I J

A
v
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O Anisotropy

Isotropic spherical a=1.5L Spherical a;=1.5L, a,=L
25% 17.6%
L J L J
25% 25% 32.4% 32.4%
25% 17.6%
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0 Declustering effect

Isotropic spherical with range > radius

33.3% 33.3%

37.0%

33.3% 26.0%

25.7% 25.7% 50.0%

48.7% 50.0%
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O Principle

» At each data point:
e Suppress the sample value Zao = Z /laZa
e Estimate its value by Kriging azag
e Compare real to estimated values

> Statistics on:

* Error: E, = Zao —Za
7 -Z
* Normalized error 55 = a
)
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O Principle

» Kriging considers available samples in the system

» When too many samples, kriging system becomes very large and may
become difficult to invert (unstable, slow)

» Kriging weights of peripheral points are small: could they be neglected?

Neighborhood:
» Unique: Take all data available

» Moving: Select the most appropriate subset of neighboring samples
° By number
* By maximum distance
* By angular sector
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