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o What can be estimated ?

Estimation

� Punctual estimation

� Block average estimation

Estimate the value Z0

at the nodes of
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Samples

at the nodes of

a regular grid

Estimate the average

of the variable Z 

over the block



o Linear estimation techniques

Estimation

� Linear estimator:

• Each estimation is obtained as a linear combination of the values measured at 

sample points

� Several linear interpolation techniques:

• Moving average

• Inverse distance (closest point)
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• Inverse distance (closest point)

• Inverse distance

� Properties of the estimation:

• Smoothness

• Unbiasedness

• Exact interpolation



o Illustration

Interpolation

� Exhaustive data set (reality)

� Irregular sampling used as data

� For each method, represent the estimation as a map and along a section
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o Moving average

Interpolation
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o Influence polygon – Nearest neighbor

Interpolation
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o Inverse distance

Interpolation
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o What do we want to achieve ?

Estimation

� Produce an estimation of the variable z at the target location, as a linear 

combination of the sample values:

� If the real unknown value is denoted:

� We want the estimation error:

*
0z

0z
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� We want the estimation error:

• To be zero on average

• To be as small as possible (quadratic)

• To take into account:

� Distances (between samples and target, and among samples)

� Spatial characteristics: continuity, smoothness, …

*
0 0z zε = −



o Formalism – Random framework

Formalism

� Reality is unknown, unique and complex

� It would be impossible to reproduce all the processes involved which have 

produced the sample values

� Hence the choice of probabilistic framework

� The regionalized variable is considered as a realization (outcome) of a 

random function:
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random function:

( )( ) , ( )z x Z x Z xω= =



o Random Functions

Formalism

� Stationary (or order 2):

• Mean:

• Covariance :

( )E Z m=

[ ( ), ( )] [ ( ) ][ ( ) ] ( )Cov Z x Z x h E Z x m Z x h m C h+ = − + − =
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• Variance: [ ( )] (0)Var Z x C=

Example of a stationary Random Function (in 1-D)



o Random Functions

Formalism

� Intrinsic (or order 0): increments are stationary

• Mean: 

• Variance → Variogram

[ ]( ) ( ) 0E Z x h Z x+ − =

[ ] [ ]21 1
( ) ( ) ( ) ( ) ( )

2 2
h Var Z x h Z x E Z x h Z xγ = + − = + −
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• StaEonary → Intrinsic

Example of an Intrinsic Random Function (in 1-D)

[ ] [ ]( ) ( ) ( ) ( ) ( )
2 2

h Var Z x h Z x E Z x h Z xγ = + − = + −



o Kriging

Formalism

� Estimation of the variable Z at the target location:

� The estimation error:

( )*
0Z Z xα αλ=∑

*
0 0Z Zε = −
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• Must have a zero expectation

• And minimum variance:

� This method is named Kriging

0 0

( ) 0εΕ =

( )   minimumVar ε



o Need for a Model

Formalism

� Last constraint requires the calculation of the variance of a linear 

combination which must remain positive.

� This calls for the use of a valid model (positive definite property)
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o General characteristics

Model

� Fitting the model on the experimental variograms (or covariances) 

calculated experimentally from the data
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o General characteristics

Model

� Behavior at the origin describes 

the regularity of the variable
γ(h)

h
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γ(h)≈h

|h|→0

Continuous

γ(h)≈h2

|h|→0

Differentiable Discontinuous

Nugget effect



o General characteristics

Model

� Behavior at large distances γ(h)

h
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sill

range Rate < h2

Bounded Unbounded



o Different structures

Model

Geostatistics & RGeostats 17

Spherical Exponential Gaussian



o Different structures

Model
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Nugget Effect Linear



o Anisotropies

Model

N150

N60Geometrical

2 2

u v

u v

h h

a a
γ
     +        
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N150

N60
N105

Zonal

( ) ( ),u v uh h hγ γ+



o Nesting structures

Model

1 2( ) ( ) ( )h h hγ γ γ= +1 ( )hγ 2 ( )hγ

+ =
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Example: Nested model:

• short range cubic

• spherical long range



o Link between covariance and variogram

Model

� A covariance is a (bounded) variogram

� An (unbounded) variogram cannot be a covariance

� When a covariance exists, the link between covariance and variogram is:

( ) (0) ( )h C C hγ = −
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C(0)



o Reminders

Kriging

� Estimation of the variable Z at the target location:

� The estimation error:

( )*
0Z Z xα αλ=∑

*
0 0Z Zε = −
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• Must have a zero expectation

• And minimum variance:

� This method is named Kriging

0 0

( ) 0εΕ =

( )   minimumVar ε



o Principle

Simple Kriging

� Z is a stationary Random Variable with a constant known mean:

� The estimation is obtained as a linear combination of data :

� where the Kriging weights are obtained as solution of the Kriging system:

[ ]m E Z=

*
0 1Z Z mα α α

α α
λ λ = + − 

 
∑ ∑
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� where the Kriging weights are obtained as solution of the Kriging system:

� We also obtain the variance of the estimation error:

0C Cβ αβ α
β

λ =∑

[ ] 00 0Var C Cα α
α

ε λ= −∑



o In matrix notation

Simple Kriging

� Kriging system (regular if no duplicate):

� Estimation:

[ ] [ ]0C Cαβ α αλ × = 

 
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� Variance of the estimation  error:

[ ] [ ]*
0 1

t
Z Z mα α α

α
λ λ = × + × − 

 
∑

( ) [ ] [ ]00 0

t
Var C Cα αε λ= − ×



o Properties

Simple Kriging

� Kriging is a smoothed estimation

� Kriging is an exact interpolation: at data location, kriging estimate matches 

data value and estimation error is zero:

( ) ( )*
0 0Var Z Var Z≤

( )ε= =
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� Kriging weights do not depend on data values

� The estimation does not depend on the covariance sill

� The variance of estimation error is directly proportional to the covariance 

sill

( )* ( )     and    0Z x Z Varα α αε= =



o Exercise

Simple Kriging

Simple Kriging in the following setup:

� 3 Data and Target on a square pattern (mesh = 1m)

� Spherical covariance with range 1.25m and sill 2

� Known mean = 2

Z2=4
Target

Geostatistics & RGeostats 26

� Establish and solve the simple kriging system

� Derive the estimated value and the corresponding estimation variance

Z1=3 Z3=1



o Exercise

Simple Kriging

� Simple Kriging system:

11 12 13 1 10

21 22 23 2 20

31 32 33 3 30

C C C C

C C C C

C C C C

λ
λ
λ

     
     × =     
          

(0) 2

(1) 0.112

( 2) 0

C

C

C

=
=

=
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� Kriging weights:

� Results:

1

2 3

0.006

0.056

0.106i

λ
λ λ

λ

= −
= =

=∑
*

2

2.050

1.410

Z

σ
=
=



o Principle

Ordinary Kriging

� Z is a stationary Random Variable with a constant unknown mean:

� The estimation is obtained as a linear combination of data :

� where the Kriging weights are obtained as solution of the Kriging system:

*
0Z Zα α

α
λ=∑

λ µ + =∑
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� We also obtain the variance of the estimation error:

0

1

C Cβ αβ α
β

β
β

λ µ

λ

 + =

 =


∑

∑

( ) 00 0Var C Cα α
α

ε λ µ= − −∑



o In matrix notation

Ordinary Kriging

� Kriging system (regular if no duplicate):

� Estimation:

01

1 0 1t

C Cαβ α αλ
µ

     
× =     

     

*

t
Z

Z α αλ   
= ×   
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� Variance of the estimation  error:

� Can also be written replacing                by  

*

0

Z
Z α αλ

µ
   

= ×   
   

( ) 0
00 1

t
C

Var C α αλ
ε

µ
   

= − ×   
   

( )C h ( )hγ−



o Exercise

Ordinary Kriging

Ordinary Kriging in the following setup:

� 3 Data and Target on a square pattern (mesh = 1m)

� Spherical covariance with range 1.25m and sill 2

Z2=4
Target
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� Establish and solve the ordinary kriging system

� Derive the estimated value and the corresponding estimation variance

Z1=3 Z3=1



o Exercise

Ordinary Kriging

� Ordinary Kriging system:

11 12 13 1 10

21 22 23 2 20

31 32 3 3 30

1

1

1

1 1 1 0 1

C C C C

C C C C

C C C C

λ
λ
λ
µ

     
     
     × =
     
     
     

(0) 2

(1) 0.112

( 2) 0

C

C

C

=
=

=

Geostatistics & RGeostats 31

� Kriging weights:

� Results:

1 1 1 0 1µ     

1

2 3

0.280

0.360

0.600

λ
λ λ
µ

=
= =
= −

*

2

2.640

1.600

Z

σ
=
=



o Simple Kriging

Kriging weights

L

0 %

0 %

0 % 0 %

Nugget
2 1.σ =

L

31.25%

31.25%

0 % 0 %

Sphe(2L)
2 0.80σ =
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0 % 31.25%

L

44.91%

44.91%

2.88% 2.88%

Gaus*(2L)
2 0.57σ =

mean=0



o Ordinary Kriging

Kriging weights

L

25%

25%

25% 25%

Nugget
2 1.25σ =

L

40.6%

40.6%

9.4% 9.4%

Sphe(2L)
2 0.84σ =
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25% 40.6%

L

45.99%

45.99%

4.01% 4.01%

Gaus*(2L)
2 0.57σ =



o Relay in Simple Kriging

Kriging weights

-2.24% -2.24%

Sphe(1.5L)

15.15% 15.15%
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L



o Anisotropy

Kriging weights

Isotropic spherical a=1.5L

25%

Spherical a1=1.5L, a2=L 

17.6%
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L

25%25%

25%
L

32.4%32.4%

17.6%



o Declustering effect

Kriging weights

2 0.48σ =
37.0% 37.0%

33.3% 33.3%

2 0.45σ =

Isotropic spherical with range > radius
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26.0%33.3%

50.0%

50.0%

2 0.537σ =

25.7% 25.7%

48.7%

2 0.526σ =



o Principle

Cross-validation

� At each data point:

• Suppress the sample value

• Estimate its value by Kriging

• Compare real to estimated values

� Statistics on:

0

0

*Z Zα α α
α α

λ
≠

= ∑
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� Statistics on:

• Error:

• Normalized error

0

*Z Zα α αε = −

0

*
R

Z Zα α
α

α

ε
σ
−

=



o Principle

Neighborhood

� Kriging considers available samples in the system

� When too many samples, kriging system becomes very large and may 

become difficult to invert (unstable, slow)

� Kriging weights of peripheral points are small: could they be neglected?

Neighborhood:
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Neighborhood:

� Unique: Take all data available

� Moving: Select the most appropriate subset of neighboring samples

• By number

• By maximum distance

• By angular sector


