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o Why multivariate geostatistics

Introduction

� Highlight structural relationship between variables

� Improve the estimation of one variable using auxiliary variables : 

• sampled at the same locations : “isotopic” case

• not all sampled at the same points : “heterotopic” case

� Estimate several variables consistently

� Must be extended to any set of variables
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� Must be extended to any set of variables

� Examples:

• Top and bottom of a layer

• Depth of a horizon and gradient (slope) information

• Thickness and accumulation (2-D orebody)

• Indicator of various facies



o Point Statistics

Multivariate tools

� Covariance:

� Scatter plots

( ) ( )( )12 1 2 1 1 2 2,C Cov Z Z E Z m Z m= = − −  
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Correlation

Coefficient

ρ = 0.84

Marginal distribution of Z1
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� Regressions

Linear regression of Z2 over Z1: 

Committed error: 

Non bias:

o Linear Regression

Multivariate tools

*
2 1Z aZ b= +

*
2 2 2 1R Z Z Z aZ b= − = − −

( ) 2 1 2 10E R m am b b m am= − − = ⇔ = −

Optimality:

� Hence the linear regression: 
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o Linear Regression

Multivariate tools
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regression Z2|Z1 regression Z1|Z2
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o Spatial Statistics

Multivariate tools

Monovariate case (reminders)

� Stationary:

[ ]
( ) ( )( )

[ ]

( )

( ) ( ), ( ) ( ) ( )
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C h Cov Z x Z x h E Z x m Z x h m

=

= + = − + −  

Geostatistics & RGeostats 6

� Intrinsic:

[ ]( ) (0)Var Z x C=
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o Spatial Statistics

Multivariate tools

Multivariate case:

� Stationary:
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� Intrinsic:

( ) ( )( )12 1 2 1 1 2 2( ) ( ), ( ) ( ) ( )C h Cov Z x Z x h E Z x m Z x h m= + = − + −  

[ ][ ]12 1 1 2 2

1
( ) ( ) ( ) ( ) ( )

2
h E Z x h Z x Z x h Z xγ = + − + −



o Model

Linear model of Coregionalization

� In order to ensure the positivity of the variances of all linear 

combinations, we must fit an authorized multivariate model 

simultaneously to all the simple and cross structures

� Linear Model of Coregionalization.

� All simple and cross-variograms are modeled using the same set of basic 
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� All simple and cross-variograms are modeled using the same set of basic 

structures:

� Each sill matrix must be definite positive. In particular:

• a structure can be present in 1 and/or 2 simple variograms and be absent 

from the cross-variogram

• a structure which figures in a cross-variogram must also be present in the two 

simple variograms

• the cross-variogram must remain within an “envelop” 

( ) ( )k k
ij ij

k

h b hγ γ=∑
k k k
ij ii jjb b b≤



o Cokriging

Multivariate estimation

� Considering two variables Z1 and Z2, informed on two sets of samples S1

and S2 identical (isotopic) or not (heterotopic).

� Cokriging is an estimation technique which produces an estimation of Z1 

(or Z2) at the target point x0 so that the estimation error:

( ) ( )*Z x Z xε = −
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• is unbiased (zero mean)

• is minimum variance (optimality)

( ) ( )*
1 0 1 0Z x Z xε = −



o Principle

Simple Cokriging

� Z1 and Z2 are stationary with constant known means

� The estimation is obtained as a linear combination of all data

( )* 1 2 1 2
1 0 1 2 1 2( ) ( ) 1Z x Z x Z x m mα α β β α βλ λ λ λ

 
= + + − − 

 
∑ ∑ ∑ ∑

[ ] [ ]1 1 2 2   and   m E Z m E Z= =
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� where the weights are obtained as the solution of the Cokriging system:

� and the estimation variance:
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o In matrix notation

Simple Cokriging

� Cokriging system (regular if no duplicate):

� Estimation:

11 12 1 11
0

21 22 2 12
0

C C C

C C C
αβ αβ α α

αβ αβ β β

λ
λ

     
× =     

          

1( )
t

Z x λ    
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� Variance of the estimation  error:
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o Principle

Ordinary Cokriging

� Z1 and Z2 are stationary with constant unknown means:

� The estimation is obtained as a linear combination of data :

� where the Kriging weights are obtained as solution of the Kriging system:
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1 2

* 1 2
1 0 1 2( ) ( )
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o In matrix notation

Ordinary Cokriging

� Cokriging system (regular if no duplicate):

111 12 11
0

221 22 12
0

1

1 0

0 1

1 0 0 0 1

0 1 0 0 0

C C C

C C C
ααβ αβ α

βαβ αβ β

λ
λ
µ
µ

    
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    
    
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� Variance of the estimation  error:

� Ordinary cokriging can be written in variogram

20 1 0 0 0µ     

( )

1 11
0

2 12
11 0
00

1

2

1

0

t
C

C
Var C

α α

β β

λ
λε
µ
µ

   
   
   = − ×
   
   
    



o Remarks

Cokriging weights

� Pay attention to the order of magnitude of the weights:

• The weights of Z1 have no unit

• The weights of Z2 have the unit: 1

2

Z

Z

2λ =∑
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� In Ordinary Cokriging:

• The negative weights of Z2 when associated to large values, can lead to a 

negative cokriged estimation.
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2 0
S

β
β

λ
∈

=∑



o Generalities

Cokriging simplifications

� Cokriging can be simplified if:

• Variables are spatially independent:

• Variables are intrinsically correlated

( ) ( ), ( ) 0    ij i jC h Cov Z x Z x h h = + = ∀ 
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� Then Cokriging of each variable coincides with Kriging (in isotropic case)

( )
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( )
ij

ii

C h
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o Generalities

Cokriging simplifications

� Cokriging can be simplified in the model with residuals (Markov):

� This corresponds to the following decomposition:

12 11

2
22 11

( )  ( )

( ) ( ) ( )R

C h a C h

C h a C h C h

=

= +

( )  ( ) ( )Z x a Z x b R x= + +
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with R and Z1 not correlated

� Then Cokriging is equivalent to 2 Kriging

2 1( )  ( ) ( )Z x a Z x b R x= + +

1 1

2 1 

CK K

CK K K

Z Z

Z a Z b R

 =


= + +



o General definition

Collocated Cokriging

� If the variable Z1 is known exhaustively and when cokriging a target, we 

use:

• The two variables measured at sample points

• The value of Z1 collocated on the target sample

� Collocated (simple) Cokriging system for estimating Z2 at target:

11 12 11 1 12C C C Cλ     
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� Note that the last column-line of the system changes for each target: this 

does not allow optimization in the Unique neighborhood (unless using 

some algebraic trick)

11 12 11 1 12
0 0

21 22 12 2 22
0 0

11 12 11 1 12
0 0 00 0 00

C C C C

C C C C

C C C C

αβ αβ α α α

αβ αβ α β β

α α

λ
λ
λ

     
     × =     
     
     



o Extension of the Markov Model

Collocated Cokriging

� We start from the same decomposition:

� Consider that Z1 is known exhaustively: 
2 1( )  ( ) ( )Z x a Z x b R x= + +

2 0 1,0 0

1,0 2, 1,

( )  Z ( )

 Z

CK KZ x a b R x

a b Z aZ bα α αλ
= + +

 = + + − − ∑
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� Non bias implies that:
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o Extension of the Markov Model

Collocated Cokriging

� Collocated Cokriging system (with 2 variables) corresponds to 

kriging of the residuals  under unbiasedness constraints:

1, 0

1

1

1 0 0 1

0 0

C Z C

Z Z

αβ α α αλ
µ
µ

    
    × =    
        
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� This corresponds to the well-known external drift kriging method

1, 2 1,00 0Z Zα µ        



o Variable extraction

Factorial Kriging Analysis

� When the variable Z is modeled using a nested variogram

� We can imagine  the following decomposition:

assuming that: 

1 2( ) ( ) ( )C h C h C h= +

1 2( ) ( ) ( )Z x Z x Z x m= + +

( )1 1 1( ), ( ) ( )Cov Z x Z x h C h+ =
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� Starting from Z measurements, we estimate 

� Factorial Cokriging system:

( )
( )
( )

1 1 1

2 2 2

1 2

( ), ( ) ( )

( ), ( ) 0

Cov Z x Z x h C h

Cov Z x Z x h

+ =

+ =

*
1 ( ) ( )Z x Z xα α

α
λ=∑

[ ] 1
0C Cαβ α αλ   × =   



o Application

Factorial Kriging Analysis

� In metallography, trace elements are usually masked by instrumental 

noise linked to several hours of exposure

� In this application, the treated sample represents an image of 512*512 

pixels where the P trace elements is measured. 

Factorial Kriging Analysis is used to filter the noise out.

21

Factorial Kriging Analysis is used to filter the noise out.

� Moreover, several additional elements can be used to enhance the noise 

filtering: this is the case with Cr and Ni.
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o Monovariate

Factorial Kriging Analysis

Phosphorus

D1M1

 0.  10.  20.  30.  40.  50.  60.  70.  80.  90.  100. 

 400.  400. 
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 0.  10.  20.  30.  40.  50.  60.  70.  80.  90.  100. 
 0.  0. 

 100.  100. 

 200.  200. 

 300.  300. 

( ) 384 75 ( /13) 13 h Nugget Exp h hγ = + +



o Monovariate

Factorial Kriging Analysis

De-noised Phosphorus

monovariate 
nugget effect filtering
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o Multivariate

Factorial Cokriging Analysis

Phosphorus
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o Multivariate

Factorial Cokriging Analysis

Auxiliary variables
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Nickel Chromium



o Multivariate

Factorial Cokriging Analysis

P 0.28ρ =P 0.25ρ = −

Correlations between variables
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Cr

Ni 0.71ρ = −

CrNi



o Multivariate

Factorial Cokriging Analysis

D1M1

D1M1

D1M1

D1M1

P

Multivariate Model

443

876096

781456

P

Cr

Ni

Variances

Correlation matrices (normalized variables):
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D1M1

D1M1

Cr

Ni

77.4 5.0 5.8

       5.0 11.6 8.8

5.8 8.8 8.0

14.7 14.8 17.2

( /10) 14.8 22.2 22.3

17.2 22.3 23.4

5.6 0 0

( / 28) 0 61.0 58.0

0 58.0 66.6

Nugget

Exp h

Sph h

− 
 − 
 
 

− 
 + − 
 − − 

 
 + − 
 − 



o Multivariate

Factorial Cokriging Analysis

De-noised Phosphorus

multivariate 
nugget effect filtering
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o Comparisons

Factorial Cokriging Analysis
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MultivariateMonovariate



o Comparisons

Factorial Cokriging Analysis

Mono
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Multi


