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0 Why multivariate geostatistics

» Highlight structural relationship between variables

» Improve the estimation of one variable using auxiliary variables :
* sampled at the same locations : “isotopic” case
* not all sampled at the same points : “heterotopic” case

> Estimate several variables consistently

» Must be extended to any set of variables

» Examples:
 Top and bottom of a layer
e Depth of a horizon and gradient (slope) information
e Thickness and accumulation (2-D orebody)
e Indicator of various facies
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O Point Statistics

K Covariance:  Cp, =Cov(Z,,Z,) =E[(Z,-m)(Z,-m,) ]|
> i — [ ' ' ]

Scatter plots ' - .
|

Marginal distribution of Z2

Correlation
Coefficient
p=0.84

Marginal distribution of Z1 /
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O Linear Regression

» Regressions

Linear regression of Z, over Z,;: Z, =aZ,+b

Committed error: R=Z7,-7,=Z,-aZ,-b
Non bias: E(R)=m,-am -b=0 < b=m,-am,
Optimality: Var (R) =Var(Z,)+a*Var(Z,)-2aCov(Z,,Z,)

=g, +a‘c/-2aC, minimum
—>a= C122 = COV(Zl’ZZ) = ﬁ
o,  Var(Z) o,

Z,—m, _le—ml

» Hence the linear regression:
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O Linear Regression
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O Spatial Statistics

Monovariate case (reminders)
» Stationary:

m=E[Z(X)]
C(h) =Cov(Z(x),Z(x+h)) =E[(Z(x)-m)(Z(x+h)-m) |
Var[Z(x)] =C(0)

> Intrinsic:

E[Z(x+h)-Z(x)] =0

y(h) :%E[Z(x)—Z(x+ h)]’
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O Spatial Statistics

Multivariate case:
» Stationary:

m = E[Z,(x)]
m, = E[Z,(X)]
C,,(h) =Cov(Z,(x), Z (x+h)) = E| (Z,(x)=m,)(Z {x+h)-m,) |

> Intrinsic:

Pooh) = 2 E[Z,(x+ ) = Z,(0] [ 2.0+ 1) =Z )]
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0 Model

>
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In order to ensure the positivity of the variances of all linear
combinations, we must fit an authorized multivariate model
simultaneously to all the simple and cross structures

Linear Model of Coregionalization.
All simple and cross-variograms are modeled using the same set of basic

structures: yj (h) Z yk (h)

[k K
Each sill matrix must be definite p05|t|ve In particular: ‘ ‘ < b bjj

e astructure can be present in 1 and/or 2 simple variograms and be absent
from the cross-variogram

e astructure which figures in a cross-variogram must also be present in the two
simple variograms

e the cross-variogram must remain within an “envelop”
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0 Cokriging

» Considering two variables Z, and Z,, informed on two sets of samples S,
and S, identical (isotopic) or not (heterotopic).

» Cokriging is an estimation technique which produces an estimation of Z,
(or Z,) at the target point x, so that the estimation error:

€=7,(%)=Z; (o)

* isunbiased (zero mean)
* is minimum variance (optimality)
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O Principle

» Z,and Z, are stationary with constant known means
m=E[z,] and m,=E|[Z,]
» The estimation is obtained as a linear combination of all data

Z (k) =T AL+ A2 00) | 1T | -m T
S S, S S,

» Wwhere the weights are obtained as the solution of the Cokriging system:

M AcE+> Az =Cl OaOds
< a'ds BUS,
2, ACap+ 2, AChr =Cpo DBOS,
La0s BUS,
» and the estimation variance: \/gr (&) = Céé — Z A;C;(l) + Z AﬁQCﬁlﬁ

all§ pUSs,
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O In matrix notation

» Cokriging system (regular if no duplicate):
11 12 1 11
21 22 2 12
Caﬁ Caﬂ /]/3 CﬁO
» Estimation:

* Zl(Xa) t Acly 1 2
002 E (i3 mgs

> Variance of the estimation error:
t
pL clu
Var (¢)=Cyp—| 5| % 5
00 AZ C12
B
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O Principle

» Z,and Z, are stationary with constant unknown means:
> The estimation is obtained as a linear combination of data :

* _ 1 2
Zl (Xo) - Z/]azl(xa) + Z/]ﬁzz(xﬁ)
S S,
» where the Kriging weights are obtained as solution of the Kriging system:

> ACon+ D> AL+ =C,y OaOS

= a ~aa’ =

> ACon+ D ACH +u,=Cse OBUS,
alls BUS;

> A =1

allS

2.4 =0
A0S
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O In matrix notation

» Cokriging system (regular if no duplicate):

c CZ 1 0] [A] |[ch

a0
21 22 2 12
CZ CZ 0 1| [43]_|Cx
1 0 0 0 |x 1
0 1 0 0 |4 | O
» Variance of the estimation error: - .t
A | | Cao
AZ C12
Var () =Cgo—| 7 | x| #°
My 1
Yz

» Ordinary cokriging can be written in variogram
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» Pay attention to the order of magnitude of the weights:
e The weights of Z, have no unit

4
ZZ

* The weights of Z, have the unit:

2 _
» In Ordinary Cokriging: Z /]/3 =0
A0S

e The negative weights of Z, when associated to large values, can lead to a
negative cokriged estimation.
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0 Generalities

» Cokriging can be simplified if:
e Variables are spatially independent:

C,(h)=Cov| Z,(x),Z;(x+h)|=0 Oh

e Variables are intrinsically correlated
C, (h)
Cii (h)

=cste L[i,]

» Then Cokriging of each variable coincides with Kriging (in isotropic case)
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0 Generalities

» Cokriging can be simplified in the model with residuals (Markov):

C(h) =a Cy(h)
C,,(h)= aZCM(h) +C,(h)

» This corresponds to the following decomposition:
Z,(x) =a Z,(x)+b+R(X)

with R and Z1 not correlated

» Then Cokriging is equivalent to 2 Kriging

ZlCK — ZlK

Z," =aZ +b+R"

MINES
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0 General definition

> If the variable Z, is known exhaustively and when cokriging a target, we
use:

 The two variables measured at sample points
e The value of Z, collocated on the target sample
» Collocated (simple) Cokriging system for estimating Z, at target:
noczoci [A7] [cs
C cZ Cllx At|=| i
Coo Cao Coo [40] [Coo

A
N
[

» Note that the last column-line of the system changes for each target: this
does not allow optimization in the Unique neighborhood (unless using
some algebraic trick)
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0 Extension of the Markov Model

» We start from the same decomposition:
Z,(x) =a Z,(x)+b+R(x)

» Consider that Z, is known exhaustively:
25 (%) =aZ,,+b+ R (xo)
=aZ,+b+> A,Z,,-az,,-b]

= Z/]azz,a + a(ZLO—ZAaZMj + b(l—z/]aj

> Non bias implies that: Z/]a =1
a

ZAazl,a = Zl,O

18
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0 Extension of the Markov Model

» Collocated Cokriging system (with 2 variables) corresponds to
kriging of the residuals under unbiasedness constraints:

1z, [A] |C

a a0

1 0 O (Xl
Z, 0 O H Zl,O

[

» This corresponds to the well-known external drift kriging method
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O Variable extraction

» When the variable Z is modeled using a nested variogram
C(h) =C,(h)+C,(h)
» We can imagine the following decomposition:

Z(X)=Z,(X)+Z,(x)+m

assumingthat: ooy (7, (x), Z,(x+h)) = C,(h)
Cov(Z,(x),Z,(x+h)) =C,(h)
Cov(Z,(x),Z,(x+h))=0

» Starting from Z measurements, we estimate  Z, (X) = Z/]aza (X)
a

» Factorial Cokriging system: [Caﬁ} X[/]a] = [Ccl,o}

20
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0 Application

» In metallography, trace elements are usually masked by instrumental
noise linked to several hours of exposure

» In this application, the treated sample represents an image of 512*512
pixels where the P trace elements is measured.
Factorial Kriging Analysis is used to filter the noise out.

» Moreover, several additional elements can be used to enhance the noise
filtering: this is the case with Cr and Ni.

21
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O Monovariate

500.
400.
300.
200.
100.

0.

y(h) =384 Nugget + 75Exp b /13 13h|

Phosphorus
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O Monovariate

De-noised Phosphorus

monovariate
nugget effect filtering
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O Multivariate

Phosphorus
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O Multivariate

/ Auxiliary variables

Nickel | Chromium /
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O Multivariate

/ Correlations between variables

p=-0.25

. p=0.28

- Ni Cr
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O Multivariate

Multivariate Model a — | —| —
Variances P 443 7
Cr 87609€ |
Ni  78145€ ’ P

Correlation matrices (normalized variables):

77.4 -50 5.
Nugget -50 11.6 8.
58 8.8 8.

147 148 - 17 E—
+Exp(h/10)| 14.8 22.2 - 22.
-17.2 -223 23.

5.6 0 0
+Sh(h/28)) 0 61.0 - 58.
0 -58.0 ©66.
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0 Multivariate
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De-noised Phosphorus

multivariate
nugget effect filtering
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0 Comparisons

Multivariate
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O Comparisons
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