

GeoEnv - July 2014

Multivariate Geostatistics

D. Renard N. Desassis

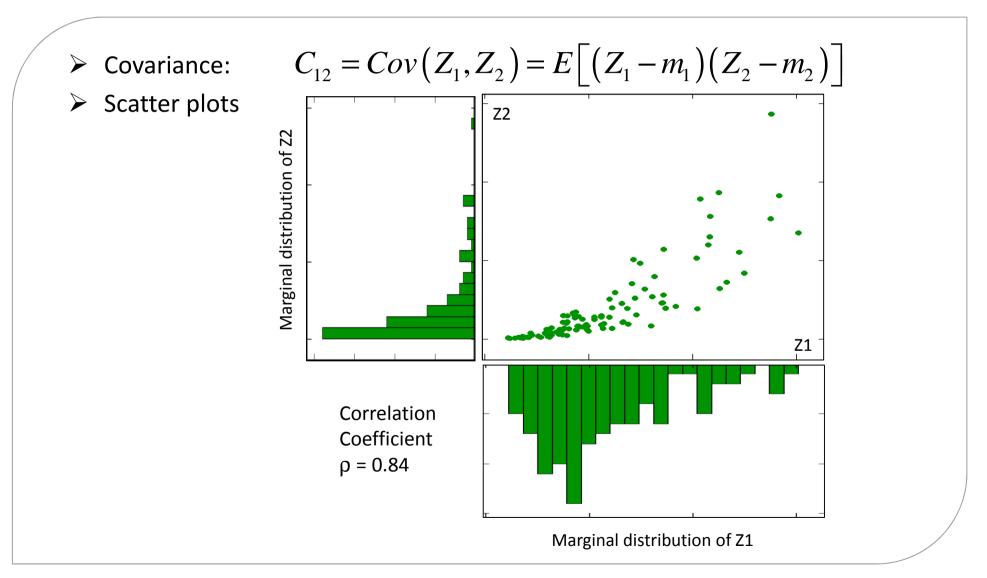
Why multivariate geostatistics

- Highlight structural relationship between variables
- Improve the estimation of one variable using auxiliary variables :
 - sampled at the same locations : "isotopic" case
 - not all sampled at the same points : "heterotopic" case
- Estimate several variables <u>consistently</u>
- Must be extended to any set of variables

> Examples:

- Top and bottom of a layer
- Depth of a horizon and gradient (slope) information
- Thickness and accumulation (2-D orebody)
- Indicator of various facies

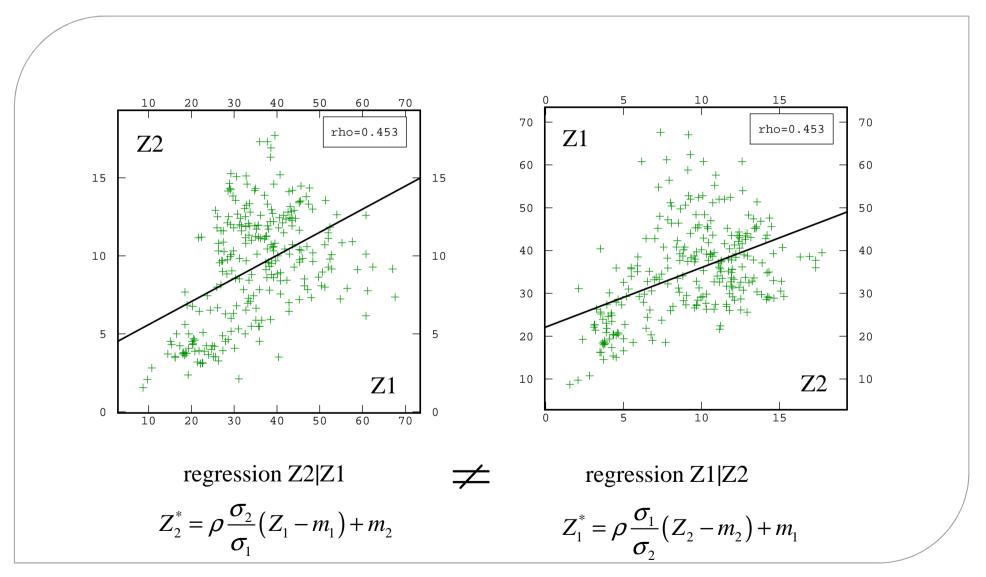
Point Statistics



o Linear Regression

Regressions	
Linear regression of Z ₂ over Z ₁ :	$Z_2^* = aZ_1 + b$
Committed error:	$R = Z_2 - Z_2^* = Z_2 - aZ_1 - b$
Non bias:	$E(R) = m_2 - am_1 - b = 0 \Leftrightarrow b = m_2 - am_1$
Optimality: $Var(R)$	$= Var(Z_2) + a^2 Var(Z_1) - 2aCov(Z_1, Z_2)$
	$= \sigma_2^2 + a^2 \sigma_1^2 - 2aC_{12} \text{minimum}$
$\Rightarrow a = -$	$\frac{C_{12}}{\sigma_1^2} = \frac{Cov(Z_1, Z_2)}{Var(Z_1)} = \rho \frac{\sigma_2}{\sigma_1}$
Hence the linear regression:	$\frac{Z_2^* - m_2}{\sigma_2} = \rho \frac{Z_1 - m_1}{\sigma_1}$

o Linear Regression



Statistics & Probabilities

○ Spatial Statistics

Monovariate case (reminders)

> Stationary:

$$m = E[Z(x)]$$

$$C(h) = Cov(Z(x), Z(x+h)) = E[(Z(x)-m)(Z(x+h)-m)]$$

$$Var[Z(x)] = C(0)$$

> Intrinsic:

$$E[Z(x+h) - Z(x)] = 0$$

$$\gamma(h) = \frac{1}{2}E[Z(x) - Z(x+h)]^{2}$$

Spatial Statistics

Multivariate case:

> Stationary:

$$m_{1} = E[Z_{1}(x)]$$

$$m_{2} = E[Z_{2}(x)]$$

$$C_{12}(h) = Cov(Z_{1}(x), Z_{2}(x+h)) = E[(Z_{1}(x) - m_{1})(Z_{2}(x+h) - m_{2})]$$

> Intrinsic:

$$\gamma_{12}(h) = \frac{1}{2} E \Big[Z_1(x+h) - Z_1(x) \Big] \Big[Z_2(x+h) - Z_2(x) \Big]$$

Model

In order to ensure the positivity of the variances of all linear combinations, we must fit an authorized multivariate model simultaneously to all the simple and cross structures

Linear Model of Coregionalization.

All simple and cross-variograms are modeled using the same set of basic \succ structures:

$$\gamma_{ij}(h) = \sum_{k} b_{ij}^{k} \gamma^{k}(h)$$

- Each sill matrix must be definite positive. In particular: $|b_{ij}^k| \leq \sqrt{b_{ii}^k b_{jj}^k}$
- - a structure can be present in 1 and/or 2 simple variograms and be absent from the cross-variogram
 - a structure which figures in a cross-variogram must also be present in the two simple variograms
 - the cross-variogram must remain within an "envelop"

\circ Cokriging

- > Considering two variables Z_1 and Z_2 , informed on two sets of samples S_1 and S_2 identical (isotopic) or not (heterotopic).
- Cokriging is an estimation technique which produces an estimation of Z₁ (or Z₂) at the target point x₀ so that the estimation error:

$$\varepsilon = Z_1(x_0) - Z_1^*(x_0)$$

- is unbiased (zero mean)
- is minimum variance (optimality)

○ Principle

 \succ Z₁ and Z₂ are stationary with constant known means

$$m_1 = E[Z_1]$$
 and $m_2 = E[Z_2]$

The estimation is obtained as a linear combination of all data

$$Z_{1}^{*}(x_{0}) = \sum_{S_{1}} \lambda_{\alpha}^{1} Z_{1}(x_{\alpha}) + \sum_{S_{2}} \lambda_{\beta}^{2} Z_{2}(x_{\beta}) + m_{1} \left(1 - \sum_{S_{1}} \lambda_{\alpha}^{1}\right) - m_{2} \sum_{S_{2}} \lambda_{\beta}^{2}$$

where the weights are obtained as the solution of the Cokriging system:

$$\begin{cases} \sum_{\alpha' \in S_1} \lambda_{\alpha}^1 C_{\alpha\alpha'}^{11} + \sum_{\beta \in S_2} \lambda_{\beta}^2 C_{\alpha\beta}^{12} = C_{\alpha0}^{11} \quad \forall \alpha \in S_1 \\ \sum_{\alpha \in S_1} \lambda_{\alpha}^1 C_{\alpha\beta}^{12} + \sum_{\beta' \in S_2} \lambda_{\beta}^2 C_{\beta\beta'}^{22} = C_{\beta0}^{12} \quad \forall \beta \in S_2 \end{cases}$$

> and the estimation variance: $Var(\mathcal{E}) = C_{00}^{11} - \sum_{\alpha \in S_1} \lambda_{\alpha}^1 C_{\alpha 0}^{11} + \sum_{\beta \in S_2} \lambda_{\beta}^2 C_{\beta 0}^{12}$

○ In matrix notation

Cokriging system (regular if no duplicate):

$$\begin{bmatrix} C_{\alpha\beta}^{11} & C_{\alpha\beta}^{12} \\ C_{\alpha\beta}^{21} & C_{\alpha\beta}^{22} \end{bmatrix} \times \begin{bmatrix} \lambda_{\alpha}^{1} \\ \lambda_{\alpha}^{2} \\ \lambda_{\beta}^{2} \end{bmatrix} = \begin{bmatrix} C_{\alpha0}^{11} \\ C_{\alpha0}^{12} \\ C_{\beta0}^{12} \end{bmatrix}$$

> Estimation:

$$Z_1^*(x_0) = \begin{bmatrix} Z_1(x_\alpha) \\ Z_2(x_\beta) \end{bmatrix}^t \times \begin{bmatrix} \lambda_\alpha^1 \\ \lambda_\beta^2 \end{bmatrix} + m_1 \left(1 - \sum_{S_1} \lambda_\alpha^1\right) - m_2 \sum_{S_2} \lambda_\beta^2$$

> Variance of the estimation error:

$$Var(\varepsilon) = C_{00}^{11} - \begin{bmatrix} \lambda_{\alpha}^{1} \\ \lambda_{\beta}^{2} \end{bmatrix}^{t} \times \begin{bmatrix} C_{\alpha 0}^{11} \\ C_{\beta 0}^{12} \end{bmatrix}$$

\circ Principle

- \succ Z₁ and Z₂ are **stationary** with **constant unknown means**:
- > The estimation is obtained as a linear combination of data :

$$Z_{1}^{*}(x_{0}) = \sum_{S_{1}} \lambda_{\alpha}^{1} Z_{1}(x_{\alpha}) + \sum_{S_{2}} \lambda_{\beta}^{2} Z_{2}(x_{\beta})$$

> where the Kriging weights are obtained as solution of the Kriging system:

$$\sum_{\alpha' \in S_1} \lambda_{\alpha}^1 C_{\alpha \alpha'}^{11} + \sum_{\beta \in S_2} \lambda_{\beta}^2 C_{\alpha \beta}^{12} + \mu_1 = C_{\alpha 0}^{11} \quad \forall \alpha \in S_1$$
$$\sum_{\alpha \in S_1} \lambda_{\alpha}^1 C_{\alpha \beta}^{12} + \sum_{\beta' \in S_2} \lambda_{\beta}^2 C_{\beta \beta'}^{22} + \mu_2 = C_{\beta 0}^{12} \quad \forall \beta \in S_2$$
$$\sum_{\alpha \in S_1} \lambda_{\alpha}^1 = 1$$
$$\sum_{\beta \in S_1} \lambda_{\beta}^2 = 0$$

o In matrix notation

$$\begin{bmatrix} C_{\alpha\beta}^{11} & C_{\alpha\beta}^{12} & 1 & 0 \\ C_{\alpha\beta}^{21} & C_{\alpha\beta}^{22} & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} \lambda_{\alpha}^{1} \\ \lambda_{\beta}^{2} \\ \mu_{1} \\ \mu_{2} \end{bmatrix} = \begin{bmatrix} C_{\alpha0}^{11} \\ C_{\beta0}^{12} \\ C_{\beta0}^{12} \\ 1 \\ 0 \end{bmatrix}$$

 \blacktriangleright Variance of the estimation error: $\begin{bmatrix} 21 \\ 71 \end{bmatrix}^t \begin{bmatrix} 211 \\ 71 \end{bmatrix}$

$$Var(\varepsilon) = C_{00}^{11} - \begin{vmatrix} \lambda_{\alpha}^{1} \\ \lambda_{\beta}^{2} \\ \mu_{1} \\ \mu_{2} \end{vmatrix} \times \begin{vmatrix} C_{\alpha0}^{11} \\ C_{\beta0}^{12} \\ 1 \\ 0 \end{vmatrix}$$

Ordinary cokriging can be written in variogram

o Remarks

> Pay attention to the order of magnitude of the weights:

- The weights of Z₁ have no unit
- The weights of Z₂ have the unit: $\frac{Z_1}{Z_2}$
- In Ordinary Cokriging:

$$\sum_{\beta \in S_1} \lambda_{\beta}^2 = 0$$

The negative weights of Z₂ when associated to large values, can lead to a negative cokriged estimation.

\circ Generalities

- Cokriging can be simplified if:
 - Variables are spatially independent:

$$C_{ij}(h) = Cov \left[Z_i(x), Z_j(x+h) \right] = 0 \quad \forall h$$

• Variables are intrinsically correlated

$$\frac{C_{ij}(h)}{C_{ii}(h)} = cste \quad \forall i, j$$

> Then Cokriging of each variable coincides with Kriging (in isotropic case)

o Generalities

> Cokriging can be simplified in the **model with residuals** (Markov):

 $C_{12}(h) = a \ C_{11}(h)$ $C_{22}(h) = a^2 C_{11}(h) + C_R(h)$

> This corresponds to the following decomposition:

$$Z_2(x) = a Z_1(x) + b + R(x)$$

with R and Z1 not correlated

Then Cokriging is equivalent to 2 Kriging

$$\begin{cases} Z_1^{CK} = Z_1^{K} \\ Z_2^{CK} = a Z_1^{K} + b + R^{K} \end{cases}$$

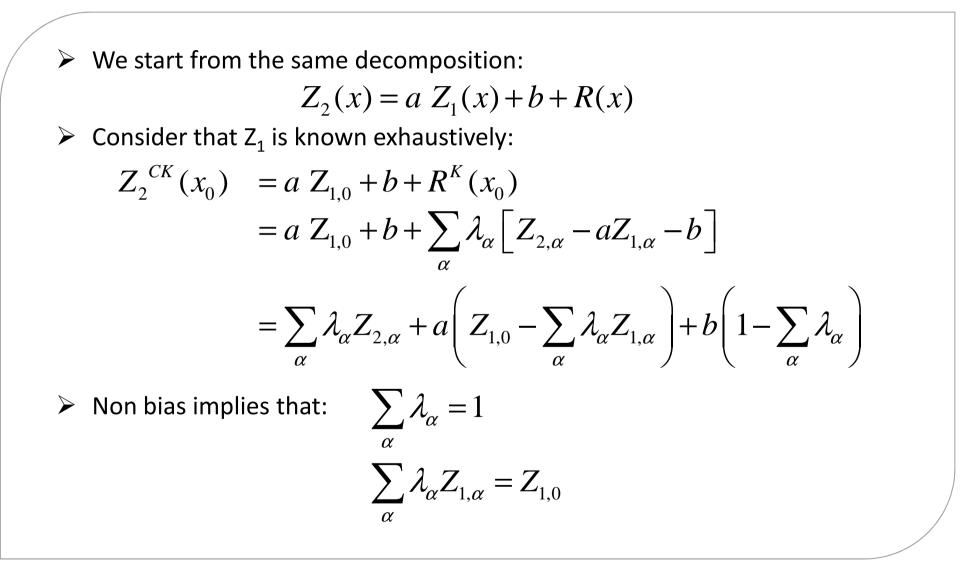
General definition

- If the variable Z₁ is known exhaustively and when cokriging a target, we use:
 - The two variables measured at sample points
 - The value of Z₁ collocated on the target sample
- Collocated (simple) Cokriging system for estimating Z₂ at target:

$$\begin{bmatrix} C_{\alpha\beta}^{11} & C_{\alpha\beta}^{12} & C_{\alpha0}^{11} \\ C_{\alpha\beta}^{21} & C_{\alpha\beta}^{22} & C_{\alpha0}^{12} \\ C_{\alpha0}^{11} & C_{\alpha0}^{12} & C_{00}^{11} \end{bmatrix} \times \begin{bmatrix} \lambda_{\alpha}^{1} \\ \lambda_{\beta}^{2} \\ \lambda_{\beta}^{1} \end{bmatrix} = \begin{bmatrix} C_{\alpha0}^{12} \\ C_{\beta0}^{22} \\ C_{\beta0}^{12} \\ C_{00}^{12} \end{bmatrix}$$

Note that the last column-line of the system changes for each target: this does not allow optimization in the Unique neighborhood (unless using some algebraic trick)

o Extension of the Markov Model



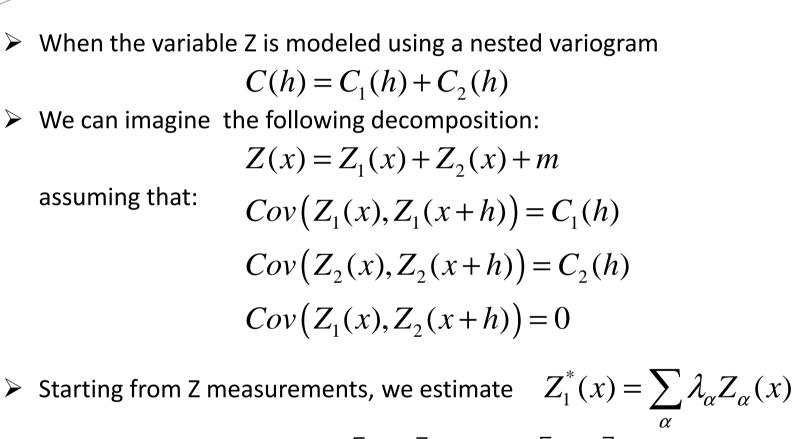
Extension of the Markov Model

Collocated Cokriging system (with 2 variables) corresponds to kriging of the residuals under unbiasedness constraints:

$$\begin{bmatrix} C_{\alpha\beta} & 1 & Z_{1,\alpha} \\ 1 & 0 & 0 \\ Z_{1,\alpha} & 0 & 0 \end{bmatrix} \times \begin{bmatrix} \lambda_{\alpha} \\ \mu_{1} \\ \mu_{2} \end{bmatrix} = \begin{bmatrix} C_{\alpha0} \\ 1 \\ Z_{1,0} \end{bmatrix}$$

> This corresponds to the well-known **external drift kriging** method

Variable extraction

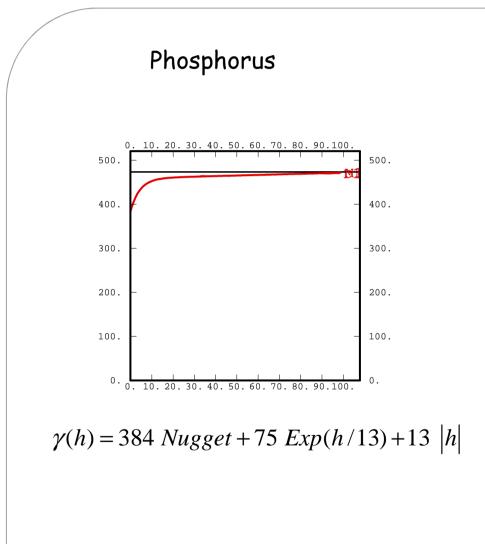


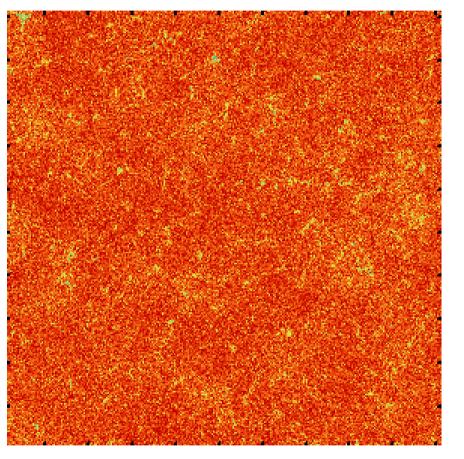
► Factorial Cokriging system: $\begin{bmatrix} C_{\alpha\beta} \end{bmatrix} \times \begin{bmatrix} \lambda_{\alpha} \end{bmatrix} = \begin{bmatrix} C_{\alpha0}^1 \end{bmatrix}$

\circ Application

- In metallography, trace elements are usually masked by instrumental noise linked to several hours of exposure
- In this application, the treated sample represents an image of 512*512 pixels where the P trace elements is measured.
 Factorial Kriging Analysis is used to filter the noise out.
- Moreover, several additional elements can be used to enhance the noise filtering: this is the case with Cr and Ni.

○ Monovariate

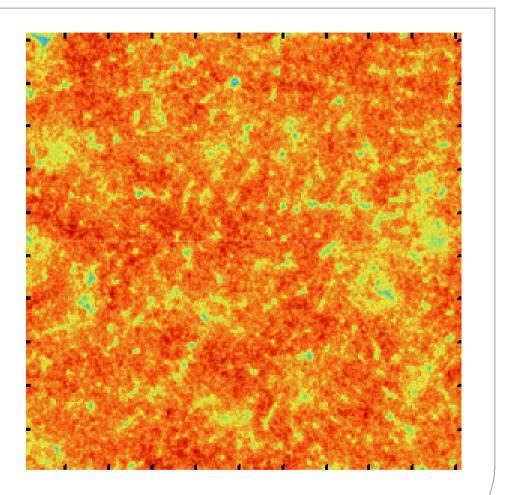




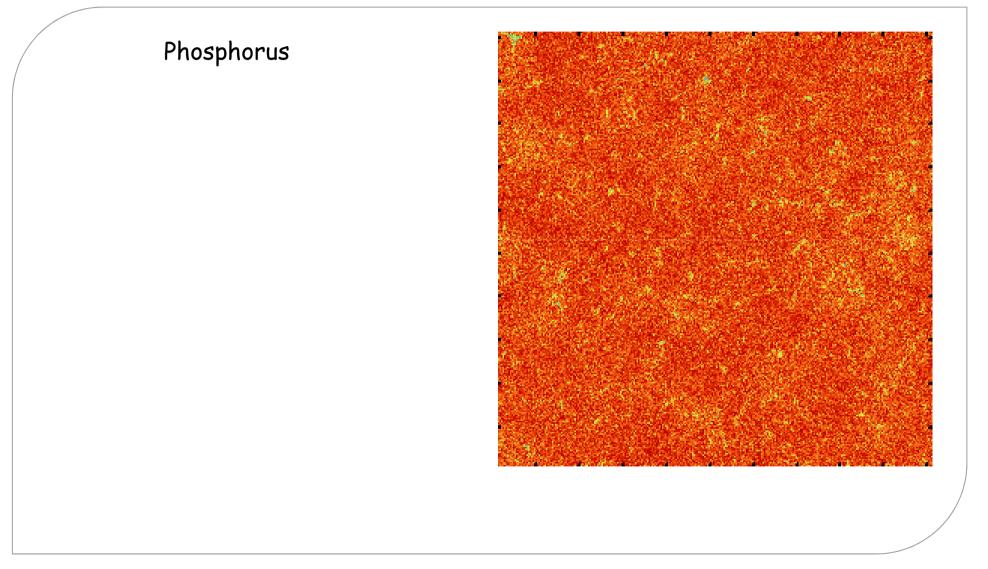
○ Monovariate

De-noised Phosphorus

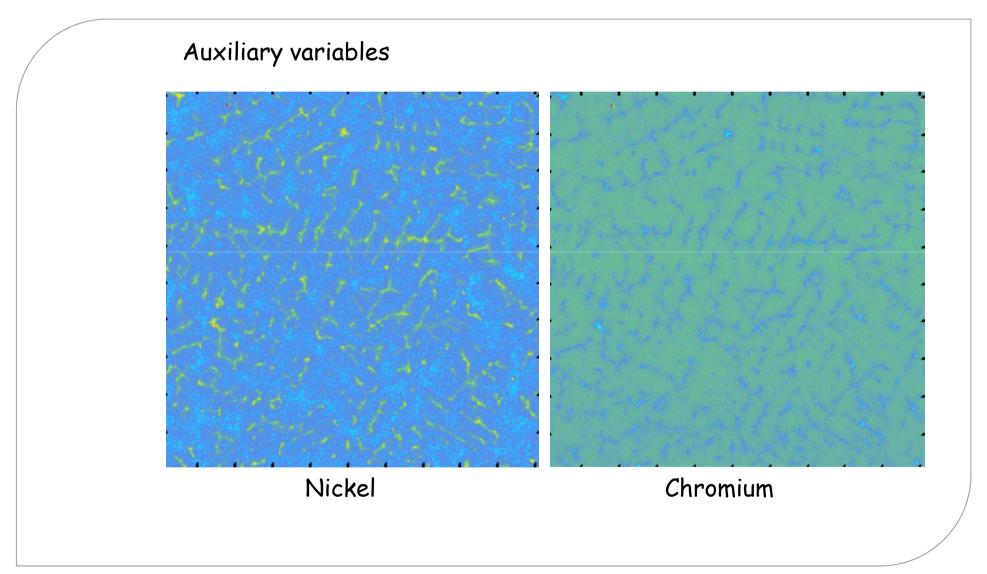
monovariate nugget effect filtering



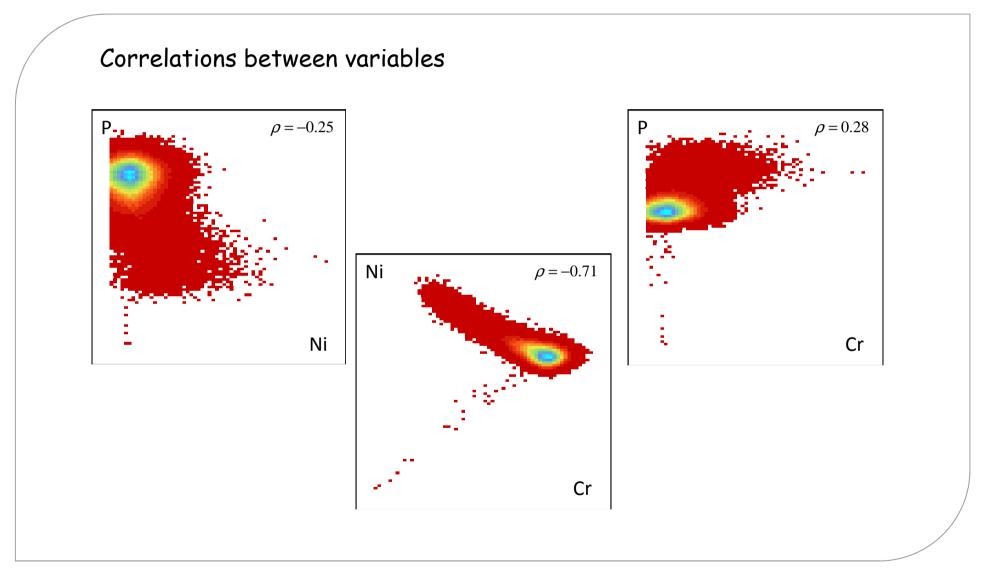
\circ Multivariate



o Multivariate

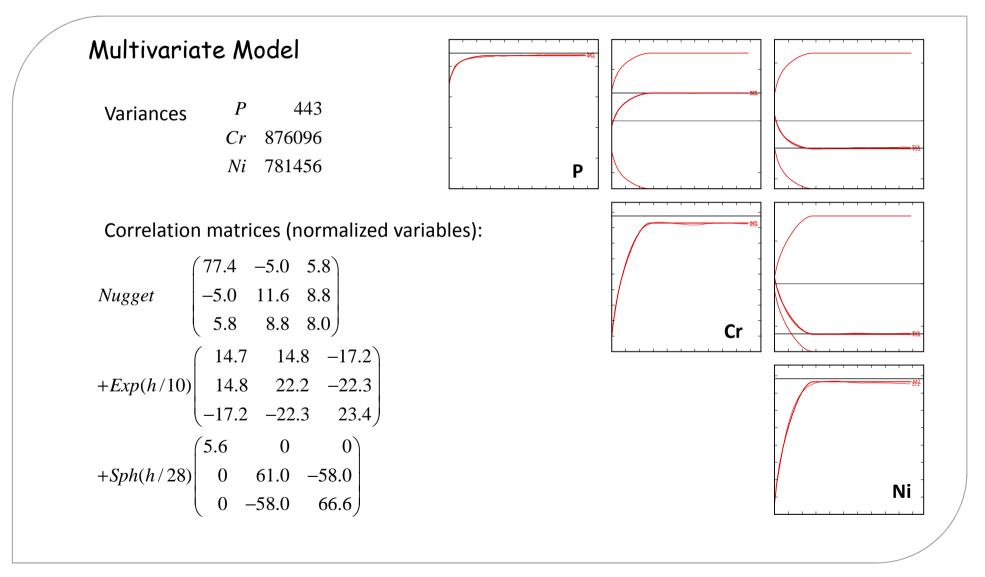


\circ Multivariate



Factorial Cokriging Analysis

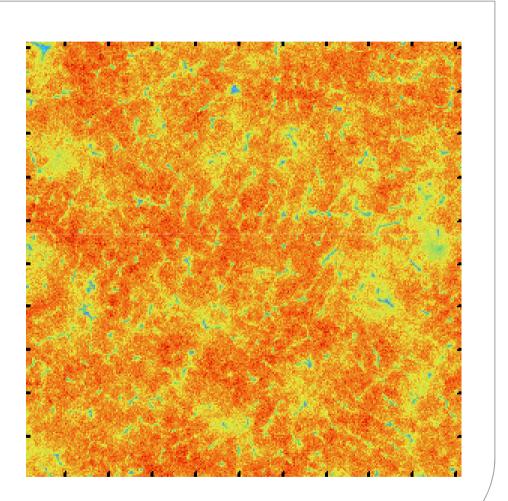
○ Multivariate



o Multivariate

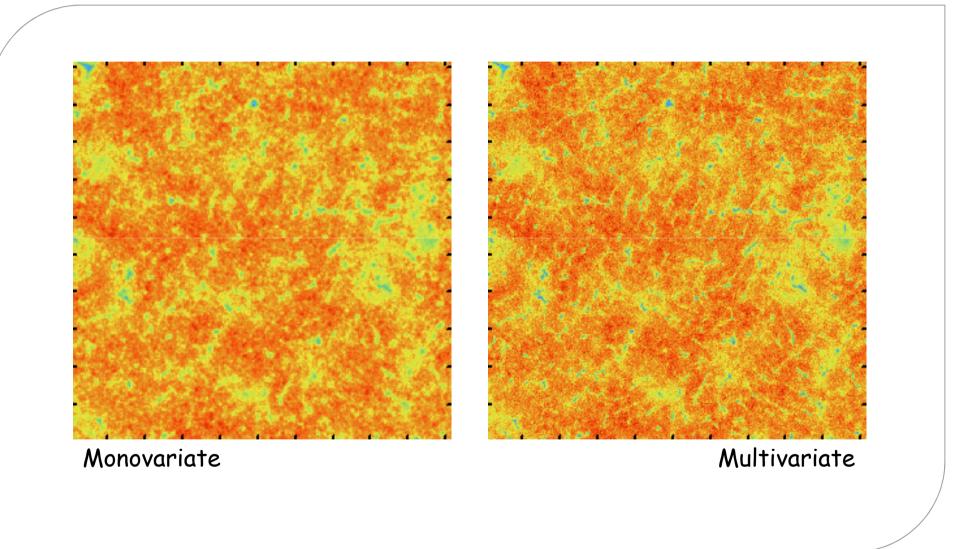
De-noised Phosphorus

multivariate nugget effect filtering



Factorial Cokriging Analysis

o Comparisons



Factorial Cokriging Analysis

o Comparisons

