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O Why are simulations necessary ?

» Estimation (Kriging) produces smooth results

» We need a different method which can:
e reproduce the variability
e Give valid (non biased) solution to complex criterion (non linear)

» Example of Volumetrics problem in the Oil industry: get the volume of a
reservoir below an impermeable horizon and above the oil-water contact
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40 samples on 8 bathymetric profiles
No sample ON the island

Samples and Kriged results

True map
Representation profile
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9 simulations conditioned by the bathymetric profiles
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9 simulated profiles conditioned by the bathymetric profiles
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oYeu Island

Probability map to belong to the island
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» We can calculate the function of interest per simulation and derive

statistics
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Estimation Simulations Réalité
Surface (km?) 22.94 23.37 23.32
Volume (km?3) 0.169 0.188
Hauteur (m) 15.93 21.32 27.50
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O Spatial Law

» We cannot rely on the first two moments:
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Three realizations with same histogram, same covariance, same 3-point statistics
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O Spatial Law

» We must know the spatial law which characterizes the variable of interest:

P(Z(x)<2Z,..,Z(%)<2Z,) O, X,)

» In general, the spatial law is not tractable

Gaussian framework:
> Definition:

{Y(X)} gaussian = (Y(x),...,Y(X,)) gaussian vector

» Simplification in the (multi-) gaussian case:
* Knowing the first two moments is sufficient to describe the whole spatial law

* Most of algorithms based on large number of independent replicates tends to
normality: Central Limit Theorem

e Stability properties
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» The variable Z is a Gaussian transformed variable if:
Z(x) =®[Y(x)]

¢ is a monotonous increasing function (called Gaussian Anamorphosis)
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Raw Gaussian
» The Gaussian Anamorphosis is fitted using Hermite polynomials: it is used
to convert simulated results backwards.
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0 Conditional Law

>
>

Consider the gaussian vector (YO,Yl, ...,Yn)
We can write: Y, =Yg Y, — Yy
n

where —
YSK - ZAaYa
=1
Then the following vector is bi-gaussian: (YSK ’Yo _YSK )
Orthogonality property of Simple Kriging: COV(YSK ’Yo _YSK ) =0
Then we can write: Y, =Yg +04G(0,1)

Conditional law: Lc’:lW(YO Y, =vy,...Y, = yn) =G(Yg , O)
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0 Basic Method

» The conditional law is based on the Simple Kriging of available information
» Hence the simulation basic algorithm:

1 - Draw the first simulated value Y¢(0) according to G(m,o?)

2.1 — Perform Simple Kriging at next target using the previously simulated
samples. We obtain Y." and o¢?

2.2 — Draw the simulated value according to G(Ys,0%)
2.3 — Return to 2.1 until all targets are processed

» Obviously the kriging system grows with the rank of the target.
» This algorithm becomes intractable when the number of targets is large
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0 Gibbs Sampler

» A similar simulation algorithm:

1 — Draw spatial uncorrelated gaussian values at targets according to G(m, o)
Perform the following iteration several times:

2.1 — Consider one target site at random

2.2 - Perform a simple kriging using all other information. We obtain Y;" and o2
2.3 — Draw the simulated value at target according to G(Ys,0%)

2.3 — lterate 2.1 until all targets have been processed

» This algorithm (also) becomes intractable when the number of targets is
large
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O Turning Bands

Transform the simulation of RF in RY by several independent simulations in R

» Along one band S, generate the RF Yi(s) with a given covariance:
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1-D Simulation

Simulation using turning bands (1, 10, 1000 bands)
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0 Exponential model

r
a Csp(r)
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1-D Simulation

Simulation using turning bands (1, 10, 1000 bands)
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