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o Why are simulations necessary ?

Simulations

� Estimation  (Kriging) produces smooth results

� We need a different method which can:

• reproduce the variability

• Give valid (non biased) solution to complex criterion (non linear)

� Example of Volumetrics problem in the Oil industry: get the volume of a 

reservoir below an impermeable horizon and above the oil-water contact

Oil

Volume
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reservoir below an impermeable horizon and above the oil-water contact
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oYeu Island

Example
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oYeu Island

Example

40 samples on 8 bathymetric profiles

No sample ON the island

Samples and Kriged results
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True map

Representation profile

Samples and Kriged results



oYeu Island

Example
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9 simulations conditioned by the bathymetric profiles



oYeu Island

Example
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9 simulated profiles conditioned by the bathymetric profiles



oYeu Island

Example

Geostatistics & RGeostats 7

Probability map to belong to the island



oYeu Island

Example

� We can calculate the function of interest per simulation and derive 

statistics
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Estimation Simulations Réalité

Surface (km2) 22.94 23.37 23.32

Volume (km3) 0.169 0.188

Hauteur (m) 15.93 21.32 27.50



o Spatial Law

Simulations

� We cannot rely on the first two moments:
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Three realizations with same histogram, same covariance, same 3-point statistics



o Spatial Law

Simulations

� We must know the spatial law which characterizes the variable of interest:

� In general, the spatial law is not tractable

Gaussian framework:

� Definition:

( ) ( )1 1 1( ) ,..., ( )     ,...,n n nP Z x z Z x z x x< < ∀
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� Definition:

� Simplification in the (multi-) gaussian case:

• Knowing the first two moments is sufficient to describe the whole spatial law

• Most of algorithms based on large number of independent replicates tends to 

normality: Central Limit Theorem

• Stability properties

{ } ( )1( )  gaussian  ( ),..., ( )  gaussian vectornY x Y x Y x⇔



o Definition

Gaussian Anamorphosis

� The variable Z is a Gaussian transformed variable if:

φ is a monotonous increasing function (called Gaussian Anamorphosis)

[ ]( ) ( )Z x Y x= Φ
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� The Gaussian Anamorphosis is fitted using Hermite polynomials: it is used 

to convert simulated results backwards.

Raw Gaussian
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o Conditional Law

Simulations

� Consider the gaussian vector

� We can write:

where 

� Then the following vector is bi-gaussian:

( )0 1, ,..., nY Y Y

0 0SK SKY Y Y Y= + −

1

n

SKY Yα α
α

λ
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=∑
( )0,SK SKY Y Y−
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� Orthogonality property of Simple Kriging:

� Then we can write:

� Conditional law:

( )0, 0SK SKCov Y Y Y− =

0 (0,1)SK SKY Y Gσ= +

( )0 1 1| ,..., ( , )n n SK SKLaw Y Y y Y y G Y σ= = =



o Basic Method

Simulations

� The conditional law is based on the Simple Kriging of available information

� Hence the simulation basic algorithm:

1 – Draw the first simulated value YS(0) according to 

2.1 – Perform Simple Kriging at next target using the previously simulated      

samples. We obtain YS
* and σS

2

2( , )G m σ

Geostatistics & RGeostats 13

samples. We obtain YS and σS

2.2 – Draw the simulated value according to

2.3 – Return to 2.1 until all targets are processed

� Obviously the kriging system grows with the rank of the target.

� This algorithm becomes intractable when the number of targets is large

* 2( , )S SG Y σ



o Gibbs Sampler

Simulations

� A similar simulation algorithm:

1 – Draw spatial uncorrelated gaussian values at targets according to

Perform the following iteration several times: 

2.1 – Consider one target site at random

2.2 - Perform a simple kriging using all other information. We obtain YS
* and σS

2

2( , )G m σ
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2.2 - Perform a simple kriging using all other information. We obtain YS and σS

2.3 – Draw the simulated value at target according to

2.3 – Iterate 2.1 until all targets have been processed

� This algorithm (also) becomes intractable when the number of targets is 

large

* 2( , )S SG Y σ



o Turning Bands

Simulations

Transform the simulation of RF in Rd by several independent simulations in R

� Along one band S, generate the RF Y1(s) with a given covariance:

� Spread the n bands in Rd

S
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� Spread the n bands in Rd
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o Spherical model

Turning Bands
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1-D Simulation
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Simulation using turning bands (1, 10, 1000 bands)



o Exponential model

Turning Bands
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Simulation using turning bands (1, 10, 1000 bands)

1 ( )DC r−

1-D Simulation


